Friday, 22 September 2017

Autoregressive Moving Average Modell Matlab Code


Um das Autoregressive Modell zu generieren, haben wir den Befehl aryule () und wir können auch filterEstimating AR Modell verwenden. Aber wie kann ich MA-Modell generieren Zum Beispiel, kann jemand bitte zeigen, wie man MA (20) Modell zu generieren Ich konnte keine passende Technik zu tun, dies zu tun. Das Rauschen wird aus einer nichtlinearen Karte generiert. So wird das MA-Modell über epsilon-Begriffe regressieren. Q1: Sei sehr hilfreich, wenn der Code und die Funktionsform eines MA-Modells bevorzugt MA (20) mit dem obigen Rauschmodell gezeigt werden. Q2: Dies ist, wie ich ein AR (20) mit zufälligen Rauschen, aber nicht wissen, wie man die obige Gleichung als das Rauschen verwenden, anstatt mit Rand für beide MA und AR gefragt Aug 15 14 um 17:30 Mein Problem ist die Verwendung von Filter. Ich bin nicht vertraut mit Transfer-Funktion Konzept, aber Sie erwähnten, dass Zähler B39s sind die MA Koeffizienten so die B sollte die 20 Elemente und nicht A39s. Als nächstes sagen wir, dass das Modell einen Intercept von 0,5 hat, können Sie bitte mit dem Code zeigen, wie ich ein MA-Modell mit 0,5 Intercept erstellen kann (wie man den Intercept im Filter () erwähnte und den in meiner Frage definierten Eingang bitte danke Sie für die Filter-Link, die wirklich gelöscht die Zweifel über die Verwendung von Filter ndash SKM Aug 19 14 at 16:36 In quoty Filter (b, a, X) filtert die Daten in Vektor X mit dem Filter durch Zähler Koeffizienten Vektor beschrieben B und Nenner-Koeffizientenvektor a. Wenn a (1) nicht gleich 1 ist, filtert der Filter die Filterkoeffizienten um a (1). Wenn a (1) gleich 0 ist, gibt filter ein Fehler. quot (mathworkshelpmatlabreffilter. html) das ist Der Problembereich, wie ich es nicht verstehe, wie man das a, b (Filterkoeffizienten) spezifiziert, wenn es einen Intercept von etwa 0,5 oder einen Intercept von 1 gibt. Könnten Sie bitte ein Beispiel von MA mit Filter und einem Nicht-Null-Intercept mit dem Eingang zeigen Dass ich in der Frage ndash erwähnt habe. SKM Aug 19 14 um 17: 45Autoregressive Moving Average ARMA (p, q) Modelle für Time Series Analysis - Teil 3 Dies ist der dritte und letzte Posten in der Mini-Serie auf Autoregressive Moving Average (ARMA) Modelle für die Zeitreihenanalyse. Weve eingeführt Autoregressive Modelle und Moving Average Modelle in den beiden vorherigen Artikeln. Jetzt ist es Zeit, sie zu kombinieren, um ein anspruchsvolleres Modell zu produzieren. Letztlich wird uns dies zu den ARIMA - und GARCH-Modellen führen, die es uns ermöglichen, die Vermögensrenditen vorherzusagen und die Volatilität zu prognostizieren. Diese Modelle bilden die Grundlage für den Handel von Signalen und Risikomanagementtechniken. Wenn Sie Teil 1 und Teil 2 lesen, werden Sie gesehen haben, dass wir ein Muster für unsere Analyse eines Zeitreihenmodells folgen. Ill wiederholen Sie es kurz hier: Begründung - Warum interessieren wir uns für dieses spezielle Modell Definition - Eine mathematische Definition, um Mehrdeutigkeit zu reduzieren. Correlogram - Plotten eines Beispiel-Korrelogramms, um ein Modellverhalten zu visualisieren. Simulation und Montage - Anpassung des Modells an Simulationen, um sicherzustellen, dass wir das Modell richtig verstanden haben. Echte Finanzdaten - Bewerben Sie das Modell auf echte historische Vermögenspreise. Vorhersage - Prognose nachfolgende Werte zum Erstellen von Handelssignalen oder Filtern. Um diesem Artikel zu folgen, empfiehlt es sich, die vorherigen Artikel zur Zeitreihenanalyse zu betrachten. Sie können alle hier gefunden werden. Bayesian Information Criterion In Teil 1 dieser Artikelserie sahen wir das Akaike Information Criterion (AIC) als Mittel an, uns dabei zu helfen, zwischen separaten besten Zeitreihenmodellen zu wählen. Ein eng verwandtes Werkzeug ist das Bayesian Information Criterion (BIC). Im Wesentlichen hat es ein ähnliches Verhalten gegenüber der AIC, dass es Modelle für mit zu vielen Parametern bestraft. Dies kann zu Überfüllung führen. Der Unterschied zwischen dem BIC und dem AIC ist, dass der BIC mit seiner Bestrafung zusätzlicher Parameter strenger ist. Bayesian Information Criterion Wenn wir die Wahrscheinlichkeitsfunktion für ein statistisches Modell, das k Parameter hat, und L maximiert die Wahrscheinlichkeit zu nehmen. Dann ist das Bayesian Information Criterion gegeben durch: Wo n ist die Anzahl der Datenpunkte in der Zeitreihe. Wir werden bei der Auswahl geeigneter ARMA (p, q) Modelle die AIC und BIC verwenden. Ljung-Box Test In Teil 1 dieser Artikel-Serie Rajan erwähnt in der Disqus Bemerkungen, dass die Ljung-Box-Test war besser geeignet als mit dem Akaike Information Criterion der Bayesian Information Criterion bei der Entscheidung, ob ein ARMA-Modell war eine gute Passform zu einer Zeit Serie. Der Ljung-Box-Test ist ein klassischer Hypothesentest, der entworfen ist, um zu testen, ob ein Satz von Autokorrelationen eines angepassten Zeitreihenmodells sich deutlich von Null unterscheidet. Der Test testet nicht jede einzelne Verzögerung für Zufälligkeit, sondern prüft die Zufälligkeit über eine Gruppe von Verzögerungen. Ljung-Box-Test Wir definieren die Nullhypothese als: Die Zeitreihendaten bei jeder Verzögerung sind i. i.d .. das heißt, die Korrelationen zwischen den Populationsreihenwerten sind Null. Wir definieren die alternative Hypothese als: Die Zeitreihendaten sind nicht i. i.d. Und besitzen eine serielle Korrelation. Wir berechnen die folgende Teststatistik. Q: Wenn n die Länge der Zeitreihenprobe ist, ist H die Probe Autokorrelation bei Verzögerung k und h ist die Anzahl der Verzögerungen unter dem Test. Die Entscheidungsregel, ob die Nullhypothese zurückgewiesen werden soll, besteht darin, zu prüfen, ob Q gt chi2, für eine chi-quadratische Verteilung mit h Freiheitsgraden bei dem 100 (1-alpha) - ten Perzentil. Während die Details des Tests etwas kompliziert erscheinen können, können wir in der Tat R verwenden, um den Test für uns zu berechnen, was die Prozedur etwas vereinfacht. Autogressive Moving Average (ARMA) Modelle der Ordnung p, q Nun, da wir den BIC und den Ljung-Box-Test besprochen haben, waren wir bereit, unser erstes gemischtes Modell zu besprechen, nämlich den Autoregressiven Moving Average der Ordnung p, q oder ARMA (p, Q). Bisher haben wir autoregressive Prozesse und gleitende Mittelprozesse betrachtet. Das ehemalige Modell betrachtet sein eigenes vergangenes Verhalten als Inputs für das Modell und als solche Versuche, Marktteilnehmereffekte wie Impuls und Mittelwertreduktion im Aktienhandel zu erfassen. Das letztere Modell wird verwendet, um Schock-Informationen zu einer Serie zu charakterisieren, wie etwa eine Überraschungs-Gewinn-Ankündigung oder ein unerwartetes Ereignis (wie die BP Deepwater Horizon Ölpest). Daher versucht ein ARMA-Modell, diese beiden Aspekte bei der Modellierung von finanziellen Zeitreihen zu erfassen. Beachten Sie, dass ein ARMA-Modell nicht berücksichtigt Volatilität Clustering, eine wichtige empirische Phänomene von vielen finanziellen Zeitreihen. Es ist kein bedingungslos heteroscedastisches Modell. Dafür müssen wir auf die ARCH - und GARCH-Modelle warten. Definition Das ARMA (p, q) Modell ist eine lineare Kombination von zwei linearen Modellen und ist damit selbst noch linear: Autoregressives Moving Average Modell der Ordnung p, q Ein Zeitreihenmodell, ist ein autoregressives gleitendes durchschnittliches Modell der Ordnung p, q . ARMA (p, q), wenn: xt alpha1 x alpha2 x ldots wt beta1 w beta2 w ldots betaq w Ende Wo ist weißes Rauschen mit E (wt) 0 und Varianz sigma2. Wenn wir den Backward Shift Operator betrachten. (Siehe einen vorherigen Artikel), dann können wir das obige als Funktion theta und phi umschreiben: Wir können einfach sehen, dass durch die Einstellung von p neq 0 und q0 wir das AR (p) Modell wiederherstellen. Ähnlich, wenn wir p 0 und q neq 0 setzen, gewinnen wir das MA (q) Modell zurück. Eines der Hauptmerkmale des ARMA-Modells ist, dass es in seinen Parametern sparsam und redundant ist. Das heißt, ein ARMA-Modell benötigt oft weniger Parameter als ein AR (p) oder MA (q) - Modell allein. Darüber hinaus, wenn wir die Gleichung in Bezug auf die BSO umschreiben, dann können die theta und phi Polynome manchmal einen gemeinsamen Faktor teilen, was zu einem einfacheren Modell führt. Simulationen und Correlograms Wie bei den autoregressiven und gleitenden Durchschnittsmodellen werden wir nun verschiedene ARMA-Serien simulieren und dann versuchen, ARMA-Modelle an diese Realisierungen anzupassen. Wir führen dies aus, weil wir sicherstellen wollen, dass wir das Anpassungsverfahren verstehen, einschließlich der Berechnung von Konfidenzintervallen für die Modelle, sowie sicherstellen, dass das Verfahren tatsächlich angemessene Schätzungen für die ursprünglichen ARMA-Parameter wiederherstellt. In Teil 1 und Teil 2 haben wir die AR - und MA-Serie manuell konstruiert, indem wir N Abtastwerte aus einer Normalverteilung ziehen und dann das spezifische Zeitreihenmodell unter Verwendung von Verzögerungen dieser Proben erstellen. Allerdings gibt es einen einfacheren Weg, um AR-, MA-, ARMA - und sogar ARIMA-Daten zu simulieren, indem einfach die arima. sim-Methode in R verwendet wird. Beginnen wir mit dem einfachsten nicht-trivialen ARMA-Modell, nämlich dem ARMA (1,1 ) Modell. Das heißt, ein autoregressives Modell der Ordnung, kombiniert mit einem gleitenden Durchschnittsmodell der Ordnung eins. Ein solches Modell hat nur zwei Koeffizienten, Alpha und Beta, die die ersten Verzögerungen der Zeitreihe selbst und die schockweißen Rauschbegriffe darstellen. Ein solches Modell ist gegeben durch: Wir müssen die Koeffizienten vor der Simulation angeben. Nehmen wir alpha 0,5 und beta -0,5: Die Ausgabe ist wie folgt: Lets auch das Korrelogramm: Wir können sehen, dass es keine signifikante Autokorrelation gibt, die von einem ARMA (1,1) - Modell zu erwarten ist. Schließlich können wir die Koeffizienten und ihre Standardfehler mit der arima-Funktion ausführen: Wir können die Konfidenzintervalle für jeden Parameter mit den Standardfehlern berechnen: Die Konfidenzintervalle enthalten die wahren Parameterwerte für beide Fälle, aber wir sollten beachten, dass die 95 Konfidenzintervalle sind sehr breit (eine Folge der vernünftig großen Standardfehler). Lass jetzt ein ARMA (2,2) Modell versuchen. Das heißt, ein AR (2) Modell kombiniert mit einem MA (2) Modell. Wir müssen vier Parameter für dieses Modell angeben: alpha1, alpha2, beta1 und beta2. Nehmen wir alpha1 0,5, alpha2-0.25 beta10.5 und beta2-0.3: Die Ausgabe unseres ARMA (2,2) Modells ist wie folgt: Und die entsprechende Autocorelation: Wir können nun versuchen, ein ARMA (2,2) Modell anzupassen Die Daten: Wir können auch die Konfidenzintervalle für jeden Parameter berechnen: Beachten Sie, dass die Konfidenzintervalle für die Koeffizienten für die gleitende Durchschnittskomponente (beta1 und beta2) tatsächlich nicht den ursprünglichen Parameterwert enthalten. Dies stellt die Gefahr dar, dass man versucht, Modelle an Daten anzupassen, auch wenn wir die wahren Parameterwerte kennen. Aber für Handelszwecke müssen wir nur eine prädiktive Kraft haben, die den Zufall übersteigt und genügend Gewinn über den Transaktionskosten produziert, um rentabel zu sein auf lange Sicht. Nun, da wir einige Beispiele für simulierte ARMA-Modelle gesehen haben, brauchen wir einen Mechanismus zur Auswahl der Werte von p und q bei der Anpassung an die Modelle an reale Finanzdaten. Auswählen des besten ARMA (p, q) Modells Um zu bestimmen, welche Reihenfolge p, q des ARMA-Modells für eine Serie geeignet ist, müssen wir die AIC (oder BIC) über eine Teilmenge von Werten für p, q und Dann den Ljung-Box-Test anwenden, um festzustellen, ob eine gute Passung erreicht ist, für bestimmte Werte von p, q. Um diese Methode zu zeigen, werden wir zunächst einen bestimmten ARMA (p, q) Prozess simulieren. Wir werden dann alle paarweise Werte von p in und q in und über die AIC berechnen. Wir wählen das Modell mit dem niedrigsten AIC und führen dann einen Ljung-Box-Test auf die Residuen, um festzustellen, ob wir eine gute Passform erreicht haben. Lasst uns anfangen, eine ARMA (3,2) - Serie zu simulieren: Wir erstellen nun ein Objekt endgültig, um die beste Modellanpassung und den niedrigsten AIC-Wert zu speichern. Wir schleifen über die verschiedenen p, q Kombinationen und verwenden das aktuelle Objekt, um die Anpassung eines ARMA (i, j) Modells für die Looping Variablen i und j zu speichern. Wenn die aktuelle AIC kleiner als jede zuvor berechnete AIC ist, setzen wir die endgültige AIC auf diesen aktuellen Wert und wählen diese Reihenfolge aus. Nach Beendigung der Schleife haben wir die Reihenfolge des ARMA-Modells in final. order gespeichert und die ARIMA (p, d, q) passen sich an (mit der integrierten d-Komponente auf 0) als final. arma gespeichert: Letzt die Ausgabe der AIC , Ordnung und ARIMA Koeffizienten: Wir können sehen, dass die ursprüngliche Reihenfolge des simulierten ARMA-Modells wiederhergestellt wurde, nämlich mit p3 und q2. Wir können das Corelogramm der Residuen des Modells abbilden, um zu sehen, ob sie wie eine Realisierung von diskreten weißen Geräuschen (DWN) aussehen: Das Corelogramm sieht in der Tat wie eine Realisierung von DWN aus. Schließlich führen wir den Ljung-Box-Test für 20 Verzögerungen durch, um dies zu bestätigen: Beachten Sie, dass der p-Wert größer als 0,05 ist, was besagt, dass die Residuen auf der 95-Ebene unabhängig sind und somit ein ARMA (3,2) - Modell eine Gutes modell passend Eindeutig sollte dies der Fall sein, da wir die Daten selbst simuliert haben. Dies ist jedoch genau das Verfahren, das wir verwenden werden, wenn wir ARMA (p, q) Modelle auf den SampP500 Index im folgenden Abschnitt passen. Finanzdaten Nun, da wir das Verfahren zur Auswahl des optimalen Zeitreihenmodells für eine simulierte Serie skizziert haben, ist es ziemlich einfach, es auf Finanzdaten anzuwenden. Für dieses Beispiel werden wir noch einmal den SampP500 US Equity Index wählen. Lässt die täglichen Schlusskurse mit quantmod herunterladen und dann den Log-Return-Stream erstellen: Lass die gleiche Anpassungsprozedur wie für die simulierte ARMA (3,2) - Serie oben auf der Log-Returns-Serie des SampP500 mit dem AIC: Das beste passende Modell Hat bestellen ARMA (3,3): Lets Plot die Residuen des angepassten Modells auf die SampP500 log täglichen Renditen Stream: Beachten Sie, dass es einige signifikante Spitzen, vor allem bei höheren Lags. Dies ist ein Hinweis auf eine schlechte Passform. Lasst uns einen Ljung-Box-Test durchführen, um zu sehen, ob wir statistische Beweise dafür haben: Wie wir vermutet haben, ist der p-Wert weniger als 0,05 und als solche können wir nicht sagen, dass die Residuen eine Realisierung von diskreten weißen Rauschen sind. Daher gibt es eine zusätzliche Autokorrelation in den Resten, die nicht durch das eingebaute ARMA (3,3) Modell erklärt wird. Nächste Schritte Wie wir in dieser Artikelserie ausführlich diskutiert haben, haben wir in der SampP500-Serie vor allem in den Perioden um 2007-2008 einen Hinweis auf eine bedingte Heterosedastizität (Volatilitätsclustering) gesehen. Wenn wir ein GARCH-Modell später in der Artikelserie verwenden, werden wir sehen, wie man diese Autokorrelationen beseitigt. In der Praxis sind ARMA-Modelle niemals im Allgemeinen gut passt für Log-Aktien-Renditen. Wir müssen die bedingte Heterosedastizität berücksichtigen und eine Kombination aus ARIMA und GARCH verwenden. Der nächste Artikel wird ARIMA betrachten und zeigen, wie sich die integrierte Komponente von dem ARMA-Modell unterscheidet, das wir in diesem Artikel berücksichtigt haben. Gerade Erste Schritte mit der quantitativen TradingDocumentation ist das unbedingte Mittel des Prozesses, und x03C8 (L) ist ein rationales, unendlich verzögertes Operatorpolynom (1 x03C8 1 L x03C8 2 L 2 x2026). Anmerkung: Die Konstante Eigenschaft eines Arima-Modellobjekts entspricht c. Und nicht das unbedingte Mittel 956. Durch Wolds-Zerlegung 1. Gleichung 5-12 entspricht einem stationären stochastischen Prozeß, vorausgesetzt, daß die Koeffizienten x03C8i absolut summierbar sind. Dies ist der Fall, wenn das AR-Polynom, x03D5 (L). Ist stabil Dh alle ihre Wurzeln liegen außerhalb des Einheitskreises. Darüber hinaus ist der Prozess kausal, sofern das MA-Polynom invertierbar ist. Dh alle ihre Wurzeln liegen außerhalb des Einheitskreises. Econometrics Toolbox erzwingt Stabilität und Umkehrbarkeit von ARMA-Prozessen. Wenn Sie ein ARMA-Modell mit arima angeben. Sie erhalten einen Fehler, wenn Sie Koeffizienten eingeben, die nicht mit einem stabilen AR-Polynom oder einem invertierbaren MA-Polynom übereinstimmen. Ähnlich schätzt die Schätzung während der Schätzung Stationaritäts - und Invertierbarkeitsbeschränkungen ein. Referenzen 1 Wold, H. Eine Studie in der Analyse der stationären Zeitreihe. Uppsala, Schweden: Almqvist amp Wiksell, 1938. Wählen Sie Ihr Land

No comments:

Post a Comment